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Abstract
From development of an original idea due to Schwinger, it is shown that it
is possible to recover, from the quantum description of a degree of freedom
characterized by a finite number of states (i.e., without a classical counter-
part), the usual canonical variables of position/momentum and angle/angular
momentum, the latter appearing, perhaps surprisingly, as a limit of the first.

PACS numbers: 03.65.-w, 02.30.Tb, 03.65.Ca

1. Introduction

Quantum mechanics has a lot of intriguing aspects. Particularly prominent among these aspects
is the fact that there are still a handful of fundamental questions which remain matters of debate
after so many years. Among these questions is the problem of the quantum phase, which a few
years ago saw an important chapter (but not the final one, it seems) in its history, triggered by
the advent of the approach due to Pegg and Barnett (PB) [1].

Within the broad grasp of the PB formalism, there is the particular and important problem
of one-dimensional angular coordinates in quantum mechanics. This specific problem is less
problematic than the question of the phase as a whole, but nevertheless it is ‘solved’ (or
re-solved) within the procedure of PB. In this paper, I shall relate the PB approach, in this
particular context, to an idea presented by Schwinger; from this relation, although relatively
simple, there seem to emerge quite interesting results.

Schwinger’s original idea was to recover a usual Cartesian degree of freedom (e.g., a
degree of freedom endowed with a canonically related pair of observables of position and
linear momentum) from a degree of freedom described by a finite set of states (that is, without
a classical counterpart) through a limiting process [2]. Here, I extend his discussion, showing
that the Cartesian degree of freedom can in fact be recovered by an infinite number of limiting
processes. The relationship referred to above comes from noting that a limiting element of

0305-4470/02/071763+06$30.00 © 2002 IOP Publishing Ltd Printed in the UK 1763

http://stacks.iop.org/ja/35/1763


1764 M Ruzzi

those infinitely many processes which work for the Cartesian case reproduces exactly the PB
approach for the angle/angular momentum case. So, in this sense, a circle would be the limit
of a line and not the opposite.

There is a conceptual bonus in the Schwinger procedure for obtaining the quantum
description of a Cartesian degree of freedom. Schwinger’s approach to finite and discrete
degrees of freedom is, at its root, by nature built upon quantum mechanical concepts: quantum
state, incompatible observables and unitary transformations. Once, starting from this, one
has obtained the quantum description of degrees of freedom with classical counterparts, it is
as explicit as possible that there must necessarily be no quantization of classical quantities
involved in such descriptions. The PB approach to angular coordinates can also be seen from
the same perspective and therefore shares this virtue. If one sees the two descriptions (Cartesian
and angular) as different manifestations of the same situation, then there might be room for
new interpretations of the ultimate physical meaning of such mathematical structures.

2. The Schwinger unitary operator bases and the discrete genesis of the canonical
variables

A long time ago, Schwinger noticed that one can obtain a complete basis in operator space
from a pair of unitary operators U and V , which act on each others sets of N eigenvectors as
follows:

V s |un〉 = |un−s〉 Us |vn〉 = |vn+s〉 n = 0, 1, . . . , N − 1 (1)

where cyclic notation is understood, i.e.

|uk〉 ≡ |uk(mod N)〉 |vm〉 ≡ |v(m mod N)〉. (2)

The operators have the roots of unity as eigenvalues:

U |uk〉 = exp

[
2π i

N
k

]
|uk〉 V |vk〉 = exp

[
2π i

N
k

]
|vk〉 (3)

and therefore

UN = V N = 1̂. (4)

The pair also obey Weyl algebra:

UjV l = exp

[
2π i

N
jl

]
V lUj (5)

and its eigenvectors are connected by a discrete Fourier transform:

〈vk|un〉 = 1√
N

exp

[
−2π i

N
kn

]
(6)

which means that the two sets of states carry a maximum degree of incompatibility. It must be
made clear that this construction is absolutely general, as Schwinger obtains all results above
from the mere existence of a complete family (with a finite number) of eigenstates of a given
abstract operator.

Schwinger has realized that the pair of operators {U, V } could be used to define a basis in
operator space (as will be discussed in more detail in following work [3]) and has also noticed
that, if ones goes from this discrete finite-dimensional case to a usual continuous degree of
freedom, the ordinary position–momentum description is recovered.

To further extend Schwinger’s original idea (which he concisely explored in just a few
lines), first we must introduce a scaling factor:

ε =
√

2π

N
(7)
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which will become infinitesimal as N → ∞. Then, two Hermitian operators {P, Q} (for
simplicity, odd Ns will be considered, as even values require only a little more care and a
heavier notation):

P =
(N−1)/2∑

j=−(N−1)/2

jεδp0|vj 〉〈vj | Q =
(N−1)/2∑

j ′=−(N−1)/2

j ′ε2−δq0|uj ′ 〉〈uj ′ | (8)

are constructed out of the projectors of the eigenstates of U and V . δ is a free parameter
which might assume any value in the open interval (0, 2) (the range of the original Schwinger
discussion is equivalent to setting δ = 1). {p0, q0} are real parameters that might carry
units of momentum and position, respectively, and εδp0 and ε2−δq0 are the distances between
successive eigenvalues of the P - and Q-operators. With the help of these, we can rewrite the
Schwinger operators as

V = exp

[
iε2−δP

p0

]
U = exp

[
iεδQ

q0

]
. (9)

Also let both eigenstate sets be relabelled as

|vj 〉 ≡ |p〉 |uj ′ 〉 = |q〉 with q = q0ε
2−δj ′ and p = p0ε

δj. (10)

With this,

P =
[(N−1)/2]εδp0∑

p=−[(N−1)/2]εδp0

p|p〉〈p| Q =
[(N−1)/2]ε2−δq0∑

q=−[(N−1)/2]ε2−δq0

q|q〉〈q| (11)

and equations (1) now read

exp

[
ip′Q
p0q0

]
|p〉 = |p + p′〉 (12)

and

exp

[
iq ′P
p0q0

]
|q〉 = |q − q ′〉 (13)

if {p′, q ′} are defined following the recipe of (10).
The equations above have a clear analogy with the usual relations between position and

momentum, apart from the fact that only discrete values of the parameters are allowed and that
the cyclic conditions (equation (2)) still hold.

The N → ∞ limit can now be easily taken. For δ assuming any value in the open
interval (0, 2), each Hermitian operator defined in equations (11) will feature an unbounded
and continuous spectrum, as the limit leads them to1

P =
∫ ∞

−∞
p|p〉〈p| dp Q =

∫ ∞

−∞
q|q〉〈q| dq (14)

and equations (12), (13) will now be valid for any real numbers {p, q, p′, q ′}. It must be
observed that, because of the way in which they are obtained, the labels {p, q} span the set of
all rational numbers, which is a proper subset of the set of real numbers. On the other hand,
every real number can be written as the limit of an infinite sequence of rational numbers. Then
the expression

exp

[
i(p′ + p′′ + p′′′ + · · ·)Q

p0q0

]
|p〉 = |p + p′ + p′′ + p′′′ + · · ·〉 (15)

1 This limit has to be taken carefully, but it works as if the limiting value of the discrete projector |p〉〈p| is, after
taking the limit, |p〉〈p| dp. Just consider what happens to the resolution of unity to see this.
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might converge to any real eigenvalue and its associated eigenvector. This is enough to ensure
that the whole usual Hilbert space of usual canonical variables is recovered2 [4]. Also, after
the limit is taken the cyclic condition becomes irrelevant, and the familiar relations are easily
recovered from their discrete counterparts:

Q|q〉 = q|q〉 〈q ′|q〉 = δ
(
q ′ − q

) − ∞ � q ′, q � ∞ (16)

P |p〉 = p|p〉 〈p′|p〉 = δ(p′ − p) 〈p|q〉 = 1√
2πp0q0

exp

(
ipq

p0q0

)
. (17)

Therefore the results for a degree of freedom endowed with a usual position–momentum
canonical pair of variables are completely reproduced, provided that the product of the
parameters p0q0 is set to h̄.

The ε2−δ- and εδ-factors, roughly speaking, control how ‘fast’ (as N increases) one will
become unable to identify the distance between labels of consecutive eigenvalues. The result
above is then rather peculiar, as it states that how you take this limit does not affect the final
result. The usual canonical variables would be recovered anyway.

But things can become different if you consider the extreme situation δ = 0 (or δ = 2,
which is equivalent). In this case one of the variables is not scaled at all and what follows
is almost identical to the PB scheme (for simplicity, the reference angle is set to zero). One
would have

V = exp

[
iε2M

m0

]
U = exp

[
i�

θ0

]
(18)

where

M =
(N−1)/2∑

j=−(N−1)/2

jm0|vj 〉〈vj | � =
(N−1)/2∑

j ′=−(N−1)/2

ε2j ′θ0|uj ′ 〉〈uj ′ |. (19)

If desired, the exponential of the angle operator might be used instead of the operator itself,
for the well known reasons given in [5]. The pair {m0, θ0} may carry different dimensional
units. Let (again) both eigenstates sets be relabelled as

|vj 〉 ≡ |m〉 |uj ′ 〉 = |θ〉 with θ = θ0ε
2j ′ and m = m0j. (20)

In the N → ∞ limit one would have

M =
∞∑

m=−∞
m|m〉〈m| � =

∫ π

−π

θ |θ〉〈θ | dθ (21)

�|θ〉 = θ |θ〉 〈θ ′|θ〉 = δ(θ ′ − θ) − π � θ ′, θ � π (22)

M|m〉 = m|m〉 〈m′|m〉 = δm′,m − ∞ � m′, m � ∞ (23)

〈θ |m〉 = 1√
2πm0θ0

exp

(
iθm

m0θ0

)
. (24)

The cyclic notation becomes meaningless for the |m〉 states in the N → ∞ limit, as this label
becomes unbounded. For the |θ〉 states, however, it takes naturally into account the boundary
conditions that one good set of angle states must have, i.e.,

|θ〉 ≡ |θ(mod 2π)〉 (25)

2 The author would like to thank one of the anonymous referees for drawing attention to this point.
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and the action of the angle shift operator naturally obeys the boundary condition. But it has to
be stressed that (as in the PB scheme) the range of the label θ is confined to [0, 2π) by definition,
and cyclicity modulo 2π is only a matter of notation. Therefore, and perhaps surprisingly, the
usual results for angle/angular momentum variables are recovered from the discrete root from
which the position–momentum results also emerged. Again, the product m0θ0 must be set to
h̄. θ0 is not expected to be a dimensional unit but must be related to how one is measuring the
angle.

3. Conclusions

The basic aim here was to show that the two kinds of canonical variable defined on the basis of
degrees of freedom with classical counterparts can be obtained from a description of a degree
of freedom without a classical counterpart. In a pragmatic sense, one could say that the PB
formalism for the angle/angular momentum case was seen as an extension of the Schwinger
approach to quantum Cartesian variables. In addition, the discussion which led to those results
has interesting aspects of its own.

One of those aspects is the role of the scaling factors in the limiting process. In the first
part of the discussion, where the parameter δ is free to vary in the open interval (0, 2), the
initial discrete variables are changed to a position/momentum-like description, still discrete
and with contour conditions holding prior to effectively considering the limit. The parameter δ

controls the distance between successive eigenvalues of the Hermitian operators P and Q, and
the greater one is, the smaller the other is—in such a way that their product is fixed. The infinite
and continuum limit of these variables is the position–linear momentum pair. Schwinger had
already stated that this would happen for δ = 1, and what is surprising is that it happens for
any value of δ in the open interval (0, 2).

In the second part, we consider δ in one extreme of the interval previously considered
(δ = 0). Variables are now changed to an angle/angular-momentum-like description. The
limit to the continuum in this case only affects one of the variables (in the discrete/continuous
sense) and the angle/angular momentum operators and eigenstates are promptly recovered,
basically reproducing the PB scheme. The first interesting thing is that, in this sense,
angle/angular momentum variables are a limiting case of Cartesian variables and not the
opposite. One also sees that, for a finite number of states, there is no fundamental distinction
between angular or Cartesian coordinates, or—better—between the variables that will be
identified with angular or Cartesian coordinates after the limit is taken, as representations
(19) and (11) (prior to taking the N → ∞ limit) can always be connected by a simple
transformation. The possibility of this transformation is only lost after the limiting process
has been carried out.

As a parallel remark, there is nothing in the simple steps that led from discrete to continuous
variables that constrains the product of p0q0 to h̄. In fact, there is no (technical) reason for
this product to have the same value in the two situations. We know from experience that this
happens, but it could be the case that h̄ had a dependence on the number of states allowed to
the system (but fortunately it seems that it does not).

In the sense above, one could say that it is not the geometry of a given system that imposes
different quantum variables (in a quantization procedure over an infinite line or over a ring),
but, rather, that there are different limiting cases of genuine discrete quantum descriptions that
suit different geometries. The author cannot refrain from remarking that even the physical
validity of this limit might be put into question [6]. After this work was finished, the author
became aware of [7], which discusses in great detail a similar limit to the continuum, from a
mathematical point of view.



1768 M Ruzzi

Acknowledgments

The author is grateful to Professor F F de Souza Cruz for a careful reading of the manuscript
and valuable suggestions. The author would also like to thank Professor D Galetti for years of
fruitful collaboration.

References

[1] Pegg D T and Barnett S M 1988 Europhys. Lett. 6 483
[2] Schwinger J 1970 Quantum Kinematics and Dynamics (New York: Benjamin) chs 1–3
[3] Ruzzi M 2002 Schwinger, Pegg and Barnett approaches and a relationship between angular and Cartesian quantum

descriptions: I. Phase spaces J. Phys. A: Math. Gen. to be submitted
[4] Bohm A 1978 The Rigged Hilbert Space and Quantum Mechanics (Springer Lecture Notes in Physics vol 78)

(Berlin: Springer)
[5] Carruthers P and Nieto M M 1968 Rev. Mod. Phys. 40 411
[6] Leaf B 1982 Found. Phys. 12 583
[7] Barker L 2001 J. Funct. Anal. 186 153


